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Hydrolysis  Exchange

Group Structure PKa Products H2
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Alcohol —(Ij—" O—H 12 None Yes
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Figure 6.13 A possible pathway for the formation of marine humic acids from a

triglyceride. From Harvey et al., 1983.
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Structure Attributed to Gamble et al. (1985)




Four possible carbon skeletons for the
planar fulvic acid molecule

I Morel & Hering (1993) Based on Aiken et al. (1985) g
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. Molecular model of the lowest
energy conformation of
humic acid building blocks , ' >

Carbon atoms-green
Oxygen atoms-red
Nitrogen-blue

Hydrogen not shown Davies & Ghabbour, 1999
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Air-Sea Interfacial Chemistry

Air
Nonpolar tail

Surface active compounds |
concentrated at interface

Polar head

From Concepfuval Chemistry, Second Edition by John Suchocki. Copyright & 2004 Benjamin Cummings, a division of Pearson Education.
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Figure 3.
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TABLE 10.2
Photoreactions of Organic Compounds
Chromophore Products or effects

Humic, fulvic 1. Bleaching of absorption and fluorescence
2. Production of singlet oxygen
3. Fe(III) reduction
4. Release of soluble P
5. Oxidation of cumene via ROO and OH radicals
6. Oxidation of phenolic groups to ArO and formation of e~ and O;
7. CO formation
8. H,0, formation (via O3 ?)

Chlorophyll Loss of chlorophyll

Vitamins Loss of bioassay activity

Amino acids ?

Glycine COOH C-14 loss, HCHO 1 formation

CH,SSCH,CH,S CH,S

CH,ICH, CH i

FattB; acids Par:icles, absorb., hydroperoxides Millero, 1996

Aldehydes RCO, R, CO




B Photochemistry

CDOM = Chomophoric (or Colored)

J Dissolved Organic Matter
50.5-« E
o Sunlight Energy
é - {p watts cni 1)
/\ \/_—GOO

Wavelength nm

Figure 1. Absorption spectra (pathlength of 1 cm) of several waters and a generalized surface solar en-
ergy distribution (adapted from ref. 8). (DOC of waters: A = 3.0, B = 7.8, C = 134, D = 134, E =
15.4 mg L7).
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Quinone radical
present 1n humic material

red 1 red. i
* OX ¥OX.
benzoquinone semiquinone  hydroquinone

Scott, McKnight, Blunt-Harris, Kolesar & Lovely (1998) Environ. Sci. Technol. 32, 19
23




Importance of Humic Materials

Global Carbon Reservoir

Take Part in Interfacial Phenomena
Undergo Coagulation and Aggregation
Involved in Photochemical Reactions
Contain Radicals

Known Reducing Agents

Methylate Metals

Form Chlorinated Species, THMs DBPs
Detoxify Metals

Limit Bioavailability of Metals

Alter Solubility

Influence Transport

Bind Metals & Organic Pollutants
Terminal Electron Acceptor for Bacteria

24




Humics involved in many reduction
reactions

# Cr(IV) to Cr(III)

m Fe(11I) to Fe(1l)

m Hg(I) to Hg®

# As, Se and V species
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Metal Complexation
by Humic Materials

Leenheer et al. (1998)
Morel (1983) 27
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Humic material will aggregate & may*“salt
out” when 1t binds a cation

FIGURE 6. Structural model of a calcium inner-sphere complex
Leenheer, J.A. et al. (1998) Environ. Sci. Technol. 32, 2410 29
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P Bt

B i 1 sedim ent Particles (mmerals, POM) inland .,

higher DOC O ) higher DOC
‘more aromatic / | \ ‘more humified |

morereduced bindin bindin higher DBE
moreN and 8 metals é @ é HOCS &

v diagenetic degradation

Fig. 1 — Conceptual sketch of DOM flux and biogeochemical interactions in sediments. Carbon stock data regarding
particulate and dissolved organic matter (POM and DOM) are from Jiao et al. (2010). Benthic flux estimation data for inland
and coastal environments from Yang et al. (2014) and Burdige et al. (1999), respectively. Anoxic status may be above or
below sediment depending on different ecosystems' situation. TEA: terminal electron acceptor. (Chen & Hur 201 5)




Maturation and Fossilization are terms
that refer to the formation of fossil
fuels (coal, petroleum) from plant and
animal material (biomolecules)

The overall process can be split into two or three
major parts:

Marine == Diagenesis, Catagenesis, Metagenesis

Terrestrial == Humification, Coalification




May 1981, Volume 212, Number 4496 SCI E NCE

of sludge decomposition and stabiliza-
tion can be enhanced, to discuss the
highly probable consequences of sludge
stabilization in light of the basic informa-
tion, and to suggest procedures for eval-
uating the sludge stabilization process.
As a starting point, it is necessary to

Sl“dgﬂ DecﬂmPOSitiﬂn and describe the fossilization pathway of the
_— . carbon cycle.
Stabilization

Roy Hartenstein The Fossilization Pathway of the

Carbon Cycle

Kerogens, coals, and petroleum oils
are the earth’s major fossil fuels; they
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Tablel. Analysis of organic Materials in Fossilization pathway (Percent dry wt.)

Carbo- | Protein Fat Mixed | Sludge | Fulvic Humic Peat Coal

hydrate Diet (act.) Acid Acid (old) (mid.)
C 44 58 75 53 32 47 59 59 85
H 6 # 12 7 4 44 5 6 5
N 11 2 2 3 2 1.5
(9 49 23 12 36 37 46 34 31 8

from Hartenstein, 1981
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Libes, 1992 “...diagenetic changes ...occur
under anoxic conditions at temperatures
less than 50 °C.”

Applied Gevchenesier, Vol. 11, pp. T11-720, 1996

Pcrgamﬂn Copynght 1996 Elsevier Science Lid
Primed (nGreat Brmin, All rights reserved

OBBI-2927/96 5315.00 +0.00

Early diagenesis of organic matter in recent Black Sea sediments:
characterization and source assessment

Abstract—The organic matter in 9 recent (not more than 250 years old) and ‘organic-rich’ sediments from
the southern Black Sea shelf and upper slope have been characterized semi-guantitatively by Pyrolysis/Gas
Chromatography/Mass Spectrometry (PY/GC/MS) and ""C Cross Polarization Magic Angle Spinning
Muclear Magnetic Resonance (CPMAS-NMR) spectrometry. The organic matter of 7 of the studied
sediments was found to be ligno-carbohydrate with a proteinaceous component. onc sediment appeared 10
contain oxidized coal dust and one contained thiophenes in association with pyrite. The hgno component 13
derived from grasses and soft wood lignin. Matenal entrapped in an anoxic environment contained the
highest proportions of carbohydrate and protein. All the samples had suffered diagenesis as s generally
shown by the attachment of carboxyl groups and the removal of methoxv] groups. The evidence suprests
that diagenesis occurred whilst the particles traversed the oxic water column.



Sediment Diagenesis includes more than
Organic Matter Transformations — Many
redox processes occur

Conceniratism Conceniraton Conceniration Concentration Concendration

Mntl,

:

CH,

Depth Below Seafloor




Redox process

Reaction

Aerobic respiration

Nitrate reduction

Manganese reduction

lron reduction

Sulfate reduction

Methane production

(CHL0),(NH3), (H3PO4),+(x + 2¥)Op —

xCO; + (x + y)H;O + yHNO3 + zH3PO4
5(CH,0), (NH3), (H3PO4), + 4xNO3 —

xCO; + 3xH, O + 4xHCO3; + 2xN; + 5yNH3 + 5zH3POy
(CH,0),(NH3), (H3PO4),+2xMnOx(s) + 3xCO; + xH, O —
2XMn* * + 4xHCO3 + yNH;3 + zH3PO4

(CH,O),(NH;), (H3PO4), + 4xFe(OH);(s) + 7xCO; —
4xFe’ T + 8xHCO3 + 3xH;O + yNH3 + zH3PO4
2(CH,0), (NH;3), (H3PO4),+x505™ —

xHyS 4+ 2xHCO3 + 2yNH3 + 2zH3PO4
(CH,O), (NH3), (H3PO4),—

xCH4 4+ xCOy + 2vyNH3 + 22H3PO4
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Figure 6.13 A possible pathway for the formation of marine humic acids from a

tnglyceride. From Harvey et al., 1983,
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